Deep Autoassociative Networks

Charles Hand
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California, USA
chuck@brain.jpl.nasa.gov

Abstract:. Autoassociative networks are powerful and versatile information processing systems with some
inconvenient limitations. Two of these limitations are the small number of patterns that can be clearly distinguished
and the impoverished ability of the net to form clearly defined neighborhoods around target patterns. This paper
introduces a refinement of Autoassociative networks, called ‘deep’ autoassociative networks. These novel networks
can distinguish between large numbers of patterns, and have clearly defined basins of attraction around target
patterns. The typical performance of deep autoassociative networks is significantly superior to the typical
performance of standard autoassociative networks on the same tasks. Deep autoassociative networks pay for this
increased level of performance by having an increased number of weights.

Keywords: autoassociative nets, autonomous robots, synaptic networks

1. Introduction

Autoassociative networks are one of
the classic artificial neural network
architectures [1]. They have been used for a
wide variety of pattern processing problems
such as cleaning up noisy pictures and
recognizing known pictures when partially
occluded. They also have been applied to
such important non-pattern-recognition tasks
as the traveling salesman problem. Recently
autoassociative networks have been applied
to the control of small robots [2,3,4].

There are, however, attributes of
autoassociative networks that limit their
power and versatility. One of these limiting
attributes is the fact that an autoassociative
network can only process a limited number
of patterns before these patterns start
interfering with each other. Another
troublesome attribute is the way
autoassociative networks sometimes have
trouble forming well-defined neighborhoods
around target patterns. Both of these
problems are dependent on the orthogonality
of the target patterns; but typically, both
problems severely restrict the performance
of autoasssociative networks.

This paper introduces a refinement
of autoassociative nets called deep
autoassociative networks. These deep nets
have more weights than their shallow
predecessors do, but they can distinguish
between many more patterns and between
less orthogonal patterns. Deep nets also
form more clearly defined neighborhoods
(basins of attraction) than are usual for
autoassociative networks.

To understand how deep
autoassociative networks (DAN) differ from
Standard Autoassociative Networks (SAN)
we will first look at the architecture and
algorithms associated with SAN and then
compare these to the architecture and
algorithms associated with DAN. Next we
will look at how these changes affect the
basins of attraction of SAN and DAN.
Finally, we will show an experiment that
displays the difference between the basins of
attraction for SAN and DAN. In the
Conclusion section, we will look at the
reason DAN are particularly well suited for
controlling robots.

1.1 Standard Autoassociative Networks

Generally speaking, autoassociative
networks are a set of neurons that are fully
interconnected. Each neuron has input from
all other neurons, and the output of each
neuron goes to every other neuron. In some
instantiations, neurons also output to
themselves [6]. The state of a neuron is
completely determined by the dot product of
its inputs and the weights associated with its
input channel. Setting the weights sets the
behavior of the network.

The neurons of an autoassociative
network are usually thought of as
comprising a row or vector. Time is a
quantum phenomenon for (most)
autoassociative networks in the sense that
time proceeds in discrete steps or moments.
At each moment of time, the row of neurons
forms a pattern: Some neurons are firing,
some are not firing. Hence the current state
of an autoassociative network can be
described with a single binary vector. As
time goes by, the network changes this
vector. At each timestep, a neuron is either
firing (1) or not firing (0) depending on the
current input from all the other neurons.
Hence the matrix of weights connecting the
neurons controls the movement of a vector
(neuronal firing pattern) through N-space.
Autoassociative networks move vectors over
hyperspace landscapes of possibilities [6].

Here is an algorithm for updating the
network vector (firing pattern of the
neurons):

1.2. Deep Autoassociative Networks
In a standard autoassociative
network, each neuron is again connected to
all of the other neurons in the net. As in the
case of SAN, at each timestep, a neuron is
either firing (1) or not firing (0) depending
on the current input from all the other

P = The current network vector
For each neuron j in the network
Dj = the dot product of P with the
input weights of neuron j.
Use this dot product to update the
firing status of neuron j
End of the loop (all neurons are updated).

The topography of trajectories
through N-space is completely determined
by the weight matrix. Learning consists of
modifying the values of these weights. To
set an autoassociative network to recall a set
of patterns P1, P2, ..., Pn the weights are set
to P1*P1l + P2*P2+ ... +Pn*Pn where * is
the outer product of two vectors and + is
matrix addition. There are also learning
algorithms . that set the weights
incrementally.

If we look at the network from the
point of view of a single weight, we start to
see some of the reasons that autoassociative
networks are so inefficient. Consider a
network with N neurons, and look at neuron
M -- or more precisely look at weight W of
neuron M. Learning consists of moving W
to a number that is best for most patterns.
At the end of training, all weights are fixed
to reflect the tyranny of the majority of
patterns. All the patterns that represent
minorities (from a single weight's point of
view) are ignored. The performance of the
network would be improved if the fixed
weights were replaced with something more
dynamic [7,8].

neurons. Hence the matrix of weights
connecting the neurons still controls the
movement of a vector (neuronal firing
pattern) through N-space. The topography
of trajectorics through N-space is still
completely determined by the weight matrix

and learning consists of modifying the
values of these weights.

However, in a deep [8]
autoassociative network, each weight of a
SAN is replaced with a network. SANSs
have a number of inputs, each of which has
one weight. DANs have a number of inputs,
each of which has a small network with full
fan in, that only computes a dot product.
Therefore, in a deep autoassociative
network, the number of weights is N°.

Deepening the network is analogous
to adding a hidden layer of N? simple linear
neurons, using a factor of N extra weights to
insert them into the network. In effect, this
expands the dimensionality of the
embedding vector space to allow better
separation of nearby states. These hidden
units are much simpler than the top-level

neurons in that they have only a single
output rather than a full fanout.

Naturally, the updating algorithm for
a DAN differs from the updating algorithm
for a SAN. Here is the update algorithm for
DAN:

P = The current network vector
For each neuron j in the network
For each network k in the inputs to j
Wk = the dot product of P with k
End of the loop
(W contains the vector of dot products)
Dj = the dot product of P with W.
Use this dot product to update the
firing status of neuron j
End of the loop (all neurons are updated).

i

o000 00

To "deepen” a network, replace
weights with sets of weights that
are the same size as the patterns.

Weight

Figure 1: An Autoassociative Network

2. Basins of Attraction

The total collection of states of an
autoassociative network is frequently
viewed as a set of points in hyperspace. If
the statesize is N, the collection of points
form a landscape in N-space. Each setting
of the weights produces a different
landscape. The value of this visualization as
an intuition aid is obvious: movement from
one state to the next 1is always
(monotonically) "downhill." This
visualization reveals fixed points as the
nadirs of attractor basins, and limit cycles
are revealed to be the rims of flat-bottomed
basins of attraction.

When an autoassociative net is used
to recall a set of target patterns, the ideal

2.1 Comparative Basin Delineation
One easy way to implement a simple
test of basin delineation is this: '

1. Set the weights of an autoassociative
network with the n patterns P1, P2, ... Pn.
The weights are the sums of the outer
products of each pattern with itself.

2. For each Pi, set the net to a pattern that is
Hamming distance | from Pi, and let the net
run until a fixed point (or limit cycle) is
encountered.

3. Repeat step 2 for all k of the neighbors of
each of the Pi (k is the pattern length). Keep
track of how many of the neighbors of Pi go
to Pi and how many do not.

4. If all of the neighbors behave correctly,
i.e., if they all move to the attractor in one
step, the neighborhood of radius 1 is a well-
defined basin. The greater the number of
neighbors that go astray, the poorer the basin
is defined.

topography would place each target pattern
at the very bottom of a basin of attraction.
Each basin in this ideal topography would
include all the neighbors of a given target
that were nearer to the given target than to
any other target. For a net that is trained, the
construction of clearly distinguishable
basins is a measure of the efficiency of the
training algorithm. It is in this area of basin
construction that DAN is clearly superior to
SAN. We are currently calculating
theoretical and empirical capacity for
different applications.

If necessary this test could be
expanded with larger neighborhoods. The
test is a standard benchmark [9] for
comparing the basin formation
characteristics of two different
autoassociative networks. When this test is
used to compare standard autoassociative
networks with the deep autoassociative
networks outlined in this paper, the superior
basin forming ability of deep autoassociative
networks is perspicuous.

In the following example (Figure 2),
the states of autoassociative networks are
expressed in hexadecimal numbers instead
of the actual sequences of "on" and "off"
states that are traditionally expressed as
binary strings of ones and zeros. The
enhanced readability of hexadecimal
expressions is clear when the following
expressions are compared:

Hexadecimal expressions
AAA --> BBB
and
ABC --> 123

compared to the equivalent

Binary expressions
101010101010 --> 101110111011
and
101010111100 --> 000100100011

In Figure 2, the trajectories of the neighbors
of ABC in a standard autoassociative
network are recorded. The autoassociative
network, which generated the data in Figure
2, was preset with the three patterns ABC,
123, and 666.

Most of the neighbors of ABC moved to ABC on the
first timestep. The neighbor A9C, however, does not
go to ABC but instead acts like a fixed point. In this
network there will be 4 examples where a neighbor
does not go to the proper attractor. This is one of
those 4 examples. When the network is required to
remember the four patterns: ABC, CAB, 123, & 666,
there will be 8 examples of errors.

If this standard 12X12 autoassociative network is
replaced by the deep 12X12X12 network, all of the
neighbors go to the proper attractors.

Figure 2: A sample set of network runs

ABD —» ABC —+» ABC —» ABC
ABE —» ABC —» ABC —» ABC
AB8 —» ABC —+» ABC —» ABC
AB4 —» ABC —+» ABC —» ABC
AAC —» ABC —» ABC —» ABC
A9C —» A9C —» A9C —» A9C
AFC —» ABC —» ABC —» ABC
A3C —» ABC —» ABC —» ABC
BBC —%» ABC —%» ABC —» ABC
8BC —» ABC —¥» ABC —¥» ABC
EBC —» ABC —%» ABC —» ABC
2BC —» ABC —» ABC —» ABC
4. Conclusions

Preliminary evidence indicates that
deep autoassociative networks (DAN) have
more clearly delineated basins of attraction
than do standard autoassociative networks.
This means that DAN can store more
patterns and have less trouble recalling
patterns. DAN also are less likely to
confuse patterns with each other, and are
more fault tolerant because small errors
(neighbors) immediately repair themselves
when the pattern moves to the bottom of the
basin of attraction [9].

Autoassociative networks play a
central role in the development of many of
the newer autonomous robot brains. DAN

are particularly suitable for improving the
brains of small robots because of the
parameters of this brain replacement. For a
given robot, the length of the control vector
is fixed because the control vector consists
of all the robot's sensors and all the robot's
effectors and this number is fixed. For small
autonomous robots, we have a fixed length
control vector that we would like to
manipulate with greater finesse. If there is
room onboard for more weights, DAN are
the ideal replacement brains. As hardware
gets smaller and smaller, the above
argument makes more and more sense.

S.

Acknowledgement
The research described in this paper was performed at the Jet Propulsion Laboratory,

California Institute of Technology and this work was sponsored by the National Aeronautics and
Space Administration.

6.

[1]

[2]

(3]

(4]

[5]

[6]
[7]

(8]

[9]

References

D. E. Rumelhart, J. L. McLelland, "Parallel Distributed Processing"”, I - I,
MIT Press 1986

E. W. Baumann, and D. L. Williams, "Stochastic Associative Memory" in "The
Science of Artificial Neural Networks II", SPIE Proceedings vol. 1966, pp. 132-
139,1966

D. Floreano, and F. Mondada, "Evolutionary Neurocontrollers for Autonomous
Mobile Robots", Neural Networks, vol. 11, pp. 1461-1478, 1998

J. Urzelai, J. Floreano, M. Dorigo, and M. Colombetti, "Incremental Robot Shaping”,
Connection Science, vol. 10, pp. 341-360, 1998

R. M. Golden, “Mathematical Methods for Neural Network Analysis and Design,”
MIT Press, 1994

M. Spitzer, "The Mind Within the Net", MIT Press, 1999

C. Hand, “Genetic Nets,” Proceedings 1997 IEEE conference on Genetic
Programming, Stanford University, vol. 2, pp. 35-41, 1997

C. Hand, “A Pliant Synaptic Network for Signal Analysis”", The International
Conference on Mathematical and Engineering Techniques in Medicine and Biological

Sciences, vol. 1, pp. 275-281, METMBS Press, 2000

P. Churchland, T.J. Sejnowski, "The Computational Brain", MIT Press, 1992

